神经架构搜索(NAS)在神经网络(NN)的设计和部署方面具有显着提高的生产率。由于NAS通常通过部分或完全训练多个模型来评估多个模型,因此提高的生产率是以大量碳足迹为代价的。为了减轻这种昂贵的训练例程,零击/成本代理在初始化时分析了NN以产生分数,这与其真正的准确性高度相关。零成本代理目前是由专家设计的,这些专家对可能的算法,数据集和神经体系结构设计空间进行了多个经验测试。这降低了生产率,并且是对零成本代理设计的一种不可持续的方法,因为深度学习用例本质上多样化。此外,现有的零成本代理无法跨越神经体系结构设计空间。在本文中,我们提出了一个基因编程框架,以自动化发现零成本代理以进行神经体系结构评分。我们的方法有效地发现了一个可解释且可推广的零成本代理,该代理在NASBENCH-2010和网络设计空间(NDS)的所有数据集和搜索空间上提供了最高得分 - 准确性的相关性。我们认为,这项研究表明了自动发现可以跨网络体系结构设计空间,数据集和任务的零成本代理的有希望的方向。
translated by 谷歌翻译
最近的神经结构搜索(NAS)解决方案已经生产出令人印象深刻的结果培训超级网络,然后派生子网,A.K.A.儿童模型从预定义的搜索空间中胜过专家制作的模型。可以为资源受限的边缘设备选择高效且强大的子网,允许它们在野外执行良好。然而,构建任意架构的超级网络仍然是一种挑战,通常可以防止采用这些方法。为了解决这一挑战,我们呈现Bootstrapnas,这是一种自动生成NAS的超网络的软件框架。 Bootstrapnas从流行的体系结构,例如Reset-50或有效的自定义设计中获取预先训练的模型,并自动创建超网络,然后使用最先进的NAS技术来训练超级网络,导致子网,显着优于给定的预先训练模型。我们通过从任意模型存储库生成超级网络并提供结果的超网络来展示解决方案,以获得结果的再现性。
translated by 谷歌翻译
We propose the fully differentiable $\nabla$-RANSAC.It predicts the inlier probabilities of the input data points, exploits the predictions in a guided sampler, and estimates the model parameters (e.g., fundamental matrix) and its quality while propagating the gradients through the entire procedure. The random sampler in $\nabla$-RANSAC is based on a clever re-parametrization strategy, i.e.\ the Gumbel Softmax sampler, that allows propagating the gradients directly into the subsequent differentiable minimal solver. The model quality function marginalizes over the scores from all models estimated within $\nabla$-RANSAC to guide the network learning accurate and useful probabilities.$\nabla$-RANSAC is the first to unlock the end-to-end training of geometric estimation pipelines, containing feature detection, matching and RANSAC-like randomized robust estimation. As a proof of its potential, we train $\nabla$-RANSAC together with LoFTR, i.e. a recent detector-free feature matcher, to find reliable correspondences in an end-to-end manner. We test $\nabla$-RANSAC on a number of real-world datasets on fundamental and essential matrix estimation. It is superior to the state-of-the-art in terms of accuracy while being among the fastest methods. The code and trained models will be made public.
translated by 谷歌翻译
Our earlier research built a virtual shake robot in simulation to study the dynamics of precariously balanced rocks (PBR), which are negative indicators of earthquakes in nature. The simulation studies need validation through physical experiments. For this purpose, we developed Shakebot, a low-cost (under $2,000), open-source shake table to validate simulations of PBR dynamics and facilitate other ground motion experiments. The Shakebot is a custom one-dimensional prismatic robotic system with perception and motion software developed using the Robot Operating System (ROS). We adapted affordable and high-accuracy components from 3D printers, particularly a closed-loop stepper motor for actuation and a toothed belt for transmission. The stepper motor enables the bed to reach a maximum horizontal acceleration of 11.8 m/s^2 (1.2 g), and velocity of 0.5 m/s, when loaded with a 2 kg scale-model PBR. The perception system of the Shakebot consists of an accelerometer and a high frame-rate camera. By fusing camera-based displacements with acceleration measurements, the Shakebot is able to carry out accurate bed velocity estimation. The ROS-based perception and motion software simplifies the transition of code from our previous virtual shake robot to the physical Shakebot. The reuse of the control programs ensures that the implemented ground motions are consistent for both the simulation and physical experiments, which is critical to validate our simulation experiments.
translated by 谷歌翻译
Exploratory data analytics (EDA) is a sequential decision making process where analysts choose subsequent queries that might lead to some interesting insights based on the previous queries and corresponding results. Data processing systems often execute the queries on samples to produce results with low latency. Different downsampling strategy preserves different statistics of the data and have different magnitude of latency reductions. The optimum choice of sampling strategy often depends on the particular context of the analysis flow and the hidden intent of the analyst. In this paper, we are the first to consider the impact of sampling in interactive data exploration settings as they introduce approximation errors. We propose a Deep Reinforcement Learning (DRL) based framework which can optimize the sample selection in order to keep the analysis and insight generation flow intact. Evaluations with 3 real datasets show that our technique can preserve the original insight generation flow while improving the interaction latency, compared to baseline methods.
translated by 谷歌翻译
We study the learning dynamics of self-predictive learning for reinforcement learning, a family of algorithms that learn representations by minimizing the prediction error of their own future latent representations. Despite its recent empirical success, such algorithms have an apparent defect: trivial representations (such as constants) minimize the prediction error, yet it is obviously undesirable to converge to such solutions. Our central insight is that careful designs of the optimization dynamics are critical to learning meaningful representations. We identify that a faster paced optimization of the predictor and semi-gradient updates on the representation, are crucial to preventing the representation collapse. Then in an idealized setup, we show self-predictive learning dynamics carries out spectral decomposition on the state transition matrix, effectively capturing information of the transition dynamics. Building on the theoretical insights, we propose bidirectional self-predictive learning, a novel self-predictive algorithm that learns two representations simultaneously. We examine the robustness of our theoretical insights with a number of small-scale experiments and showcase the promise of the novel representation learning algorithm with large-scale experiments.
translated by 谷歌翻译
Transformers are powerful visual learners, in large part due to their conspicuous lack of manually-specified priors. This flexibility can be problematic in tasks that involve multiple-view geometry, due to the near-infinite possible variations in 3D shapes and viewpoints (requiring flexibility), and the precise nature of projective geometry (obeying rigid laws). To resolve this conundrum, we propose a "light touch" approach, guiding visual Transformers to learn multiple-view geometry but allowing them to break free when needed. We achieve this by using epipolar lines to guide the Transformer's cross-attention maps, penalizing attention values outside the epipolar lines and encouraging higher attention along these lines since they contain geometrically plausible matches. Unlike previous methods, our proposal does not require any camera pose information at test-time. We focus on pose-invariant object instance retrieval, where standard Transformer networks struggle, due to the large differences in viewpoint between query and retrieved images. Experimentally, our method outperforms state-of-the-art approaches at object retrieval, without needing pose information at test-time.
translated by 谷歌翻译
Real-world tasks are largely composed of multiple models, each performing a sub-task in a larger chain of tasks, i.e., using the output from a model as input for another model in a multi-model pipeline. A model like MATRa performs the task of Crosslingual Transliteration in two stages, using English as an intermediate transliteration target when transliterating between two indic languages. We propose a novel distillation technique, EPIK, that condenses two-stage pipelines for hierarchical tasks into a single end-to-end model without compromising performance. This method can create end-to-end models for tasks without needing a dedicated end-to-end dataset, solving the data scarcity problem. The EPIK model has been distilled from the MATra model using this technique of knowledge distillation. The MATra model can perform crosslingual transliteration between 5 languages - English, Hindi, Tamil, Kannada and Bengali. The EPIK model executes the task of transliteration without any intermediate English output while retaining the performance and accuracy of the MATra model. The EPIK model can perform transliteration with an average CER score of 0.015 and average phonetic accuracy of 92.1%. In addition, the average time for execution has reduced by 54.3% as compared to the teacher model and has a similarity score of 97.5% with the teacher encoder. In a few cases, the EPIK model (student model) can outperform the MATra model (teacher model) even though it has been distilled from the MATra model.
translated by 谷歌翻译
Large language models (LLMs) have been shown to be able to perform new tasks based on a few demonstrations or natural language instructions. While these capabilities have led to widespread adoption, most LLMs are developed by resource-rich organizations and are frequently kept from the public. As a step towards democratizing this powerful technology, we present BLOOM, a 176B-parameter open-access language model designed and built thanks to a collaboration of hundreds of researchers. BLOOM is a decoder-only Transformer language model that was trained on the ROOTS corpus, a dataset comprising hundreds of sources in 46 natural and 13 programming languages (59 in total). We find that BLOOM achieves competitive performance on a wide variety of benchmarks, with stronger results after undergoing multitask prompted finetuning. To facilitate future research and applications using LLMs, we publicly release our models and code under the Responsible AI License.
translated by 谷歌翻译
With the continued integration of autonomous vehicles (AVs) into public roads, a mixed traffic environment with large-scale human-driven vehicles (HVs) and AVs interactions is imminent. In challenging traffic scenarios, such as emergency braking, it is crucial to account for the reactive and uncertain behavior of HVs when developing control strategies for AVs. This paper studies the safe control of a platoon of AVs interacting with a human-driven vehicle in longitudinal car-following scenarios. We first propose the use of a model that combines a first-principles model (nominal model) with a Gaussian process (GP) learning-based component for predicting behaviors of the human-driven vehicle when it interacts with AVs. The modeling accuracy of the proposed method shows a $9\%$ reduction in root mean square error (RMSE) in predicting a HV's velocity compared to the nominal model. Exploiting the properties of this model, we design a model predictive control (MPC) strategy for a platoon of AVs to ensure a safe distance between each vehicle, as well as a (probabilistic) safety of the human-driven car following the platoon. Compared to a baseline MPC that uses only a nominal model for HVs, our method achieves better velocity-tracking performance for the autonomous vehicle platoon and more robust constraint satisfaction control for a platoon of mixed vehicles system. Simulation studies demonstrate a $4.2\%$ decrease in the control cost and an approximate $1m$ increase in the minimum distance between autonomous and human-driven vehicles to better guarantee safety in challenging traffic scenarios.
translated by 谷歌翻译